Pattern and synchrony of gene expression among sympatric marine microbial populations.

نویسندگان

  • Elizabeth A Ottesen
  • Curtis R Young
  • John M Eppley
  • John P Ryan
  • Francisco P Chavez
  • Christopher A Scholin
  • Edward F DeLong
چکیده

Planktonic marine microbes live in dynamic habitats that demand rapid sensing and response to periodic as well as stochastic environmental change. The kinetics, regularity, and specificity of microbial responses in situ, however, are not well-described. We report here simultaneous multitaxon genome-wide transcriptome profiling in a naturally occurring picoplankton community. An in situ robotic sampler using a Lagrangian sampling strategy enabled continuous tracking and repeated sampling of coherent microbial populations over 2 d. Subsequent RNA sequencing analyses yielded genome-wide transcriptome profiles of eukaryotic (Ostreococcus) and bacterial (Synechococcus) photosynthetic picoplankton as well as proteorhodopsin-containing heterotrophs, including Pelagibacter, SAR86-cluster Gammaproteobacteria, and marine Euryarchaea. The photosynthetic picoplankton exhibited strong diel rhythms over thousands of gene transcripts that were remarkably consistent with diel cycling observed in laboratory pure cultures. In contrast, the heterotrophs did not cycle diurnally. Instead, heterotrophic picoplankton populations exhibited cross-species synchronous, tightly regulated, temporally variable patterns of gene expression for many genes, particularly those genes associated with growth and nutrient acquisition. This multitaxon, population-wide gene regulation seemed to reflect sporadic, short-term, reversible responses to high-frequency environmental variability. Although the timing of the environmental responses among different heterotrophic species seemed synchronous, the specific metabolic genes that were expressed varied from taxon to taxon. In aggregate, these results provide insights into the kinetics, diversity, and functional patterns of microbial community response to environmental change. Our results also suggest a means by which complex multispecies metabolic processes could be coordinated, facilitating the regulation of matter and energy processing in a dynamically changing environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vitellogenin Gene Expression and Sex Steroid Levels as Biomarkers in Yellowfin Seabream (Acanthopagrus latus) Exposed to Bisphenol-A

Background: The egg yolk precursor protein vitellogenin (VTG) has proven to be a useful biomarker, used to identify organisms exposed to estrogenic compounds. Methods: We investigated variations in the VTG gene expression pattern and plasma sex steroid hormones concentrations in the yellowfin Seabream, Acanthopagrus latus, (A. latus) by various doses of bisphenol-A (BPA) exposure for 7 and 14 ...

متن کامل

Evidence of Unique and Generalist Microbes in Distantly Related Sympatric Intertidal Marine Sponges (Porifera: Demospongiae)

The diversity and specificity of microbial communities in marine environments is a key aspect of the ecology and evolution of both the eukaryotic hosts and their associated prokaryotes. Marine sponges harbor phylogenetically diverse and complex microbial lineages. Here, we investigated the sponge bacterial community and distribution patterns of microbes in three sympatric intertidal marine demo...

متن کامل

Can parasites synchronise the population fluctuations of sympatric tetraonids? / examining some minimum conditions

Sympatric populations of tetraonid birds tend to fluctuate in synchrony, at least on local scales. If shared parasites among sympatric populations of different tetraonid species are to operate as a local, synchronizing factor for population fluctuations at least two conditions should be met: i) the host species should share the same (or similar) parasite species, and ii) geographical location s...

متن کامل

Phylogenetic evidence for multiple sympatric ecological diversification in a marine snail.

Parallel speciation can occur when traits determining reproductive isolation evolve independently in different populations that experience a similar range of environments. However, a common problem in studies of parallel evolution is to distinguish this hypothesis from an alternative one in which different ecotypes arose only once in allopatry and now share a sympatric scenario with substantial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 6  شماره 

صفحات  -

تاریخ انتشار 2013